.

Коэффициенты полезного действия и их взаимосвязь

При анализе идеальных циклов дана зависимость для термического КПД цикла со смешанным подводом тепла:

ηt=1(1/ε к1) (λ p к1/(λ1+кλ(p1)).

Эта зависимость учитывает единственную потерю-передачу тепла холодному источнику Qx. В реальном двигателе это-тепло с уходящими газами Qгaз. Поэтому можно записать:

ηt=(QгQx)/Qг(QтQгаз)/QТ                    (1)

Кроме того, в реальном двигателе имеются дополнительные потери тепла Qт.п. из-за теплообмена с охлаждающей двигатель жидкостью и с окружающей средой. Все потери тепла в цилиндре реального двигателя учитываются индикаторным коэффициентом полезного действия ηi:

ηi=(QrQx)/QrQт.п./Qr=Q i/Qт                    (2)

Индикаторный КПД есть отношение тепла, эквивалентного индикаторной работе газов в цилиндре, ко всему теплу от сгорания топлива. Значениеηi, выраженное через индикаторную мощность Ni, имеет вид:

ηi=3600 Ni/Gт Qн                    (3)

  • где 3600 Ni — количество тепла, превращенное в полезную работу в цилиндре за 1 час, кДж/час;
  • Qн — теплотворная способность топлива, кДж/кг;
  • — часовой расход топлива, кг/час.

Связь между термическим и индикаторным КПД устанавливается с помощью механического коэффициентамполезного действия:

ηio: ηi=ηt ηio

Коэффициент ηio учитывает степень приближения рабочего цикла двигателя к идеальному. Абсолютное значение ηio для дизелей лежит в пределах: ηio=0,7÷0,85.

Все потери в двигателе, включая механические Qмex, учитываются эффективным коэффициентом полезного действия:

ηе=(QrQx)/QгQт.п./QrQмех/QrQe/Qт                    (4)

По аналогии с формулой (№3) можно записать:

ηe=3600 Ne/Gт Qн                    (5)

Связь между индикаторным и эффективным КПД устанавливается с помощью механического коэффициента полезного действия ηмех:

ηе=ηi ηмех=ηt  ηio  ηмех                    (6)

Механический КПД учитывает все механические потери, входящие в долю Qмex теплового баланса двигателя. Можно написать:

ηм =ηе/ηi                    (7)

ηм =Ne/Ni=(NiNм)/Ni=1Nм/Ni                    (7)

ηм = Ре/Pi = 1Рм/Pmi                    (7)

Наиболее важным показателем экономичности работы двигателя является эффективный КПД ηе.
На величину ηе оказывают влияние:

  • степень сжатия £;
  • нагрузка и частота вращения двигателя;
  • способ и качество смесеобразования;
  • скорость сгорания топлива;
  • угол опережения подачи топливаφнп;
  • величина относительной доли тепла Qoxл;
  • момент начала фазы выпуска;
  • соотношение между Nмех и Ni и т.д.

Возрастание степени сжатия £ приводит к росту термического КПД и через ηt — к возрастанию ηe. О величинах £ и соображениях но выбору этого параметра говорилось при рассмотрении процесса сжатия.

Влияние нагрузки и частоты вращения двигателя на экономичность цикла проявляется, прежде всего, через коэффициент избытка воздуха на сгорание α. С увеличением α с 1,3÷1,8 до 2,5÷3,0 индикаторный КПД интенсивно растет. Дальнейшее увеличение α до 3÷3,5 незначительно влияет на изменение величины ηi. Рост ηi при увеличении а объясняется более благоприятными условиями сгорания топлива, смещением процесса сгорания ближе к ВМТ и снижением доли тепла с уходящими газами. Однако при больших α (свыше 3÷3,5) доля тепла с уходящими газами возрастает, что ведет к уменьшению ηi.

Способ и качество смесеобразования влияет на “местные” значения α в данной точке цилиндра. При плохом распыливании и некачественном смесеобразовании процесс сгорания ухудшается, растягивается на линию расширения, доля Qгаз увеличивается, что приводит к снижению ηi и ηe. К таким же последствиям приводит уменьшение скорости сгорания топлива (при ухудшении его качества) и уменьшение угла опережения подачи топлива.

При повышении температуры охлаждающей воды и масла тепловые потери (доля Qохл) снижаются, что увеличивает ηi. Это одна из причин, почему не следует держать температуру охлаждения ниже уровня, рекомендованного фирмой -строителем.

Момент начала выпуска газов из цилиндра влияет на долю Qгаз тепла с уходящими газами и соответственно на индикторный КПД. У двигателей с газотурбинным наддувом угол опережения газовыпуска увеличивается для повышения мощности газовой турбины (чем больше уровень форсировки, тем больше при прочих равных условиях угол опережения газовыпуска). Это неминуемо снижает индикаторный кпд цилиндра. Однако эффективный КПД удается сохранить при форсировке двигателя на том же уровне или даже повысить главным образом за счет увеличения механического КПД.

Соотношение между Nмех и Ni, определяющее механический КПД, зависит от уровня форсировки двигателя и его типа. Как видно из формулы (№7’), ηмех увеличивается с увеличением Ni или уменьшением Nмех. Мощность механических потерь конкретного дизеля незначительно зависит от нагрузки двигателя (среднего индикаторного давления Pi), а зависит главным образом от частоты вращения коленчатого вала. Поэтому в двигателях с наддувом ηмех увеличивается, так как индикаторная мощность растет, а мощность механических потерь при неизменной частоте вращения остается той же. В ряде случаев Nмех при наддуве снижается (в частности, при замене приводного нагнетателя воздуха газотурбинным).

При постоянной частоте вращения двигателя с уменьшением его нагрузки Pi и Ni уменьшаются, Nмех практически не изменяется. Механический КПД уменьшается. Наконец, когда Ni упадет до величины Nмех, механический КПД станет равным 0. Этот режим носит название “холостого хода” (Ne = 0).

При неизменном положении топливной рейки двигателя, когда обеспечена примерно постоянная цикловая подача топлива, Рi ≈ const; при увеличении частоты вращения Nмех растет примерно пропорционально n при Pмех = const. Следовательно, если частота вращения изменяется при застопоренной топливной рейке, то механический КПД не изменится: ηмех ≈ const.

Если при равных геометрических размерах и одинаковых частотах вращения в 2-х и 4- тактном двигателях обеспечить Pi = idem, то мощность механических потерь у двигателей также будет одинаковой. Однако механический КПД у 2-тактного двигателя должен быть больше за счет большей индикаторной мощности.

Теоретически механический КПД может оказаться больше 1 у 4-тактного дизеля. Объясняется это тем, что Pмех (формула(№7″)) учитывает все механические потери, в том числе потери насосных ходов поршня Pн: Рмех = Ртр + Рн. Если во время насосных ходов совершается полезная работа за счет предварительно сжатого воздуха, то давление Рн может превысить давление на преодоление сил трения Ртр: Рн > Ртр. Тогда:

ηмех=1Рмех/Pi=1(РтрРн)/Pi=1+(РнРтр)/Pi>1.

Непременным (но недостаточным) условием этого неравенства является: давление при впуске воздуха в цилиндр должно быть больше, чем давление выталкивания газов. В рассматриваемом случае при ηмех > 1,  ηе > η, что противоречит физической сути понятий КПД. К этому привела нестрого обоснованная традиция учитывать работу насосных ходов поршня механическим КПД.

У выполненных конструкций двигателей численные значения КПД находятся в пределах (табл. 1)

Численное значение КПД
Наименование КПД4-тактные среднеоборотные дизели2-тактные малооборотные дизели
без наддувас наддувомбез наддувас наддувом
Механический Nm0,75÷0,850,85÷0,950,70÷0,850,86÷0,96
Индикаторный Nt0,47÷0,500,44÷0,510,47÷0,500,44÷0,55
Эффективный Ne0,37÷0,400,39÷0,470,33÷0,400,39÷0,52

Нашли опечатку? Выделите и нажмите CTRL+Enter

Август, 06, 2016 1534 0
Читайте также
Загрузка...