Насос-форсунки с гидроприводом

В топливовпрыскивающих системах с механическим приводом давление впрыска находится в прямой зависимости от скорости движения плунжера ТНВД, которая, в свою очередь, определяется скоростью вращения топливного кулачка, а, следовательно, и скоростью вращения вала двигателя. Этим объясняется, что даже при сохранении цикловой подачи неизменной давление впрыска, а с ним и качество распыливания топлива при снижении оборотов существенно падают. Экономичность и устойчивость работы двигателя на малых оборотах и нагрузках снижаются.

Чтобы избежать отмеченного недостатка, фирма Катерпиллар радикально изменила конструкцию путем замены механического привода плунжера на гидравлический. Доказательством отмеченного преимущества является рис. №1, на котором показано влияние частоты вращения двигателя на давления впрыска для механического и гидравлического приводов плунжера. Давление впрыска при гидравлическом приводе удерживается постоянным практически на всем рабочем диапазоне оборотов, что обеспечивается неизменностью давления масла в гидроприводе.

Топливная аппаратура судовых  дизелей: Насос-форсунки с гидроприводом

Рис. №1. Влияние оборотов двигателя на давления впрыска

Лишь при переходе на обороты менее 30% давление снижают, чтобы уменьшить давление впрыска и благодаря этому, увеличив продолжительность подачи, сделать ее менее концентрированной.Это позволяет несколько снизить жесткость сгорания.

Второе обстоятельство, заставившее перейти на гидропривод плунжера, заключается в том, что отмечаемая в последние годы тенденция к росту давлений впрыска, в свою очередь, диктуемая необходимостью улучшить распыливание и смесеобразование в связи с ростом требований к чистоте выхлопа, привела к существенному росту нагрузок на элементы привода плунжеров ТНВД. Увеличиваются нагрузки, а с ними и повреждения, в шестеренном приводе распределительных валов, их подшипниках, контактные нагрузки на кулачках и роликах, приводящие к их растрескиванию, износу и прочему.

В рассматриваемой насос-форсунке (рис. №2) плунжер 1 приводится в движение силой давления масла на поршень толкателя 4. Давление создается гидронасосом 4 (рис. №3) и масло направляется в аккумулятор, в котором оно с помощью клапана 3, управляемого микропроцессором 12, поддерживается постоянным и равным 22 МПа. Из аккумулятора масло, минуя датчик давления 8, направляется ко всем насос-форсункам.

В насос-форсунках имеется свой управляющий клапан 6 (рис. №2), связанный с сердечником соленоида 7. Когда необходимо начать впрыск топлива в рабочий цилиндр, микропроцессор подает ток на соленоид напряжением 90 Вольт, сердечник тянет клапан вверх и он своим коническим седлом открывает доступ масла из подводящего канала 9 в рабочую полость поршня толкателя 4. После открытия клапана сила тока на соленоиде уменьшается до 60 Вольт (ток поддержания). Плунжер насоса движется вниз, перекрывает своим телом впускное отверстие 5, сжимает топливо до давления открытия иглы 3 и начинается предварительная подача топлива (см. кривую давлений впрыска внизу рис. №2). Через короткий промежуток времени эта подача прекращается, так как при дальнейшем опускании плунжера выфрезерованный на нем кольцевой поясок 11, сообщенный с нагнетательной полостью рядом вертикальных сверлений 9, открывает впускное, оно же и отсечное, отверстие 5. При дальнейшем движении плунжера отверстие им перекрывается и начинается основная подача, которая происходит при давлении:

Рвпр= Рм х Fпорш / Fпл = 22 х 6 = 132 МПа.

Топливная аппаратура судовых  дизелей: Насос-форсунки с гидроприводом

Рис. №2. Насос-форсунка с гидроприводом (Катерпиллар)

Конец подачи происходит при отключении тока на соленоид. Пружина управляющего клапана сажает его на седло, поступление масла прекращается, а канал разгрузки 8 сообщается с рабочей полостью поршня толкателя и давление в ней падает. Поршень и плунжер прекращают свое движение вниз и пружина возвращает их в крайнее верхнее положение. В связи с понижением давления в подплунжерной полости 2 начинается ее наполнение топливом через шариковый невозвратный клапан 10.

Топливная аппаратура судовых  дизелей: Насос-форсунки с гидроприводом

Рис. №3. Схема системы гидропривода (Катерпиллар)

Управление фазами подачи, как уже отмечалось, осуществляется микропроцессором (рис. №3), на который поступают сигналы от установленных на шестерне 1 вала двигателя датчиков оборотов и положения мертвой точки 2, датчиков нагрузки, давления наддува и др. Давление наддува учитывается при определении порции впрыскиваемого топлива, чтобы избежать дымления на выхлопе на переходном режиме, когда турбокомпрессор еще не набрал оборотов и не создал необходимого давления воздуха. В этом случае микропроцессор ограничивает величину подаваемой порции топлива. После подъема давления до необходимой для полного сгорания величины ограничение подачи топлива снимается.

Топливная аппаратура судовых  дизелей: Насос-форсунки с гидроприводом

Рис. №4. Изменения давлений впрыска

На рис. №4 приведены кривые изменения давлений впрыска, тока, подаваемого на соленоид и движения управляющего клапана.

В последней модификации системы топливоподачи с гидроприводом фирма существенно изменила конструкцию гидронасоса и насос-форсунки. Управление давлением масла в системе высокого давления осуществляется не байпасированием масла регулирующим клапаном, как это было в ранней конструкции, а изменением с его помощью производительности насоса, в свою очередь определяющей создаваемое им давление масла в гидросистеме. Микропроцессор, получает сигналы от датчика давления масла и датчиков, фиксирующих режим работы двигателя и на их основе и в соответствии с заложенной в него программой посылает сигналы соленоиду, связанному с управляющим клапаном насоса гидромасла.

Давление масла в гидро-системе непосредственно определяет величину создаваемого плунжером давления топлива. Поэтому микропроцессор, управляя давлением масла, практически управляет давлением впрыска. Открытие и закрытие иглы форсунки определяющее действительные фазы начала и конца подачи топлива, контролируется насаженным на верхний конец иглы 1 (рис. №5) нагружаемым маслом поршеньком 2. Топливо высокого давления подходит под иглу, но она лишь тогда поднимется и впрыск начнется после того, как поршенек будет разгружен от давления масла (канал подвода масла и разгрузки 3). Команда на разгрузку подается микропроцессором, равно как и команда на создание давления над ним. В этот момент поршенек давит на иглу и, преодолевая силу пружины, сажает иглу на седло — впрыск заканчивается.

Топливная аппаратура судовых  дизелей: Насос-форсунки с гидроприводом

Рис. №5. Управление иглой форсунки

Эти нововведения позволили в зависимости от режима работы двигателя менять не только фазы подачи, но и радикально воздействовать на закон изменения давления в процессе подачи, дробить подачу на две-три фазы (см. рис. №6). Наличие столь гибкой системы управления подачей топлива существенно упростило решение задач снижения эмиссии выхлопных газов и повышения экономичности двигателя.

Топливная аппаратура судовых  дизелей: Насос-форсунки с гидроприводом

Рис. №6. Варианты организации впрыска в системах с гидроприводом, используемым в двигателях Катерпиллар

Нами неоднократно отмечалось, что применяемое в последние годы повышение давлений впрыска определялось стремлением повысить скорость и полноту сгорания топлива. Однако в ряде случаев это приводит к концентрации подачи на узком отрезке времени подачи, что в ряде случаев вызывает жесткое сгорание, сопровождающееся ударами в подшипниках и повышением уровня создаваемого двигателем шума. Чтобы избежать отмеченных явлений на ряде режимов, когда фактор времени, отводимого на сгорание топлива, не столь критичен (режимы пуска, работы на пониженных оборотах) желательно организовать подачу с более низкими давлениями (см. поз. 1). Другой метод снижения ударности нагрузки и уровня шума используется фирмой при работе двигателя на пониженных оборотах, но с высокой нагрузкой (см.поз. 3). Он состоит в изменении закона подачи путем уменьшения давлений впрыска на начальной стадии, что обеспечивает менее концентрированную подачу в начале впрыска и, соответственно, меньший рост давлений и температур в цилиндре. С ростом температур, как известно, связано образование канцерогенной составляющей выхлопа NOх.

Более мягкое сгорание и снижение NOх достигается также применением предвпрыска (pilot injection), когда небольшая порция топлива впрыскивается в цилиндр до начала основной подачи (см.поз 2). Это топливо готовится к сгоранию, воспламеняется и, когда в цилиндре появляется пламя, впрыскивается основная подача. Учитывая наличие в камере сгорания очагов пламени, сгорание поступающего топлива происходит без задержек и закон роста давлений газов оказывается близким к закону его поступления в цилиндр.

Дымление на выхлопе является следствием неполного сгорания топлива, сопровождающегося образованием сажи (частиц свободного углерода). Причины — недостаток воздуха, плохое распыливание и крекинг молекул топлива в зоне высоких температур (свыше 2000°) с выделением свободного углерода. Чтобы избежать дымления, Катерпиллар прибегает к подаче небольшой дополнительной порции топлива в конце сгорания, когда основная подача уже завершилась (post injection) — см.поз.4.

Сгорание свежей порции топлива интенсифицирует процессы дожигания оставшихся частиц свободного углерода и тем самым исключает их наличие в выхлопных газах.

0 комментариев

Только зарегистрированные и авторизованные пользователи могут оставлять комментарии.