Сайт нуждается в вашей поддержке!
Категории сайта

Типы построечных мест и их оборудование

Присоединяйтесь к нашему ТГ каналу!

Судостроительные предприятия имеют одно или несколько пост­роечных мест, которые могут быть наклонными и горизонтальными. Наклонные построечные места могут быть продольными и поперечны­ми. Горизонтальные построечные места, предназначенные и для пост­ройки, и для спуска судов на воду, сухие или наливные строительные доки. Большое количество предприятий имеет отдельные от соо­ружений для спуска судов горизонтальные построечные места.

Продольный наклонный стапель
Рис. 1 Продольный наклонный стапель
1 — батопорт;
2 — бетонная плита – основание;
a — H/L- уклон стапеля

Основной эксплуатационной характеристикой построечного места является допустимая погонная нагрузка на его основание — базовую опорную поверхность, которая в зависимости от длины судна опреде­ляет его предельный спусковой вес. Погонная нагрузка колеблется от 50 до 400 т/пог. м. Поэтому основания построечных мест должны быть прочными и жесткими, для чего их сооружают на мощных свайных фундаментах.

Продольное наклонное построечное место, показанное на рис. 1, состоит из надводной и подводной частей. Продольное на­клонное построечное место называют стапелем. Уклон стапеля состав­ляет 1/16 при его длине до 200 м и 1/20-1/24 при большей длине. Рас­пространены стапели с батопортом, позволяющим осушать подводные части стапеля и спусковых дорожек. К порогу стапеля подводят нахо­дящийся на плаву батопорт, заполняют его балластные отсеки водой и сажают днищем на торец тела стапеля. Воду, находящуюся в огражден­ном ковше стапеля, откачивают насосами. С торца по контуру стенок и днища стапеля установлены деревянные герметизирующие брусья, к которым гидростатическим давлением воды со стороны акватории прижимается батопорт.

В настоящее время строительство новых наклонных стапелей пре­кратилось, а существующие постепенно выводят из эксплуатации.

В связи с увеличением выпуска судов и ростом их размерений мно­гие судостроительные компании активно сооружали сухие строитель­ные доки. Доки по мере накопления опыта их эксплуатации и совер­шенствования методов постройки судов превратились в главный элемент целой построечной системы.

Схема сухого строительного дока показана на рис. 2. Он представ­ляет собой сложное железобетонное гидротехническое сооружение с го­ризонтальным расположением днища.

По тоннажу возможного к постройке судна сухие строительные доки подразделяют на доки для судов дедвейтом до 100 тыс. т, от 100 до 300 тыс. т и от 300 тыс. т до 1-го млн т (супердоки). Длина доков колеблется от 300 м до 1000 м, ширина от 60 м до 100 м, глубина от 6 м до 17 м. Современные сухие доки имеют внутридоковые затворы, которые могут быть установлены по длине дока, образуя две или три строительные камеры.

Возможность образования камер позволя­ет строить одновременно несколько судов или их частей и спускать их на воду в разное время. Доки бывают с одним или двумя входами, которые закрываются батопортом (плавающим затвором) или от­кидным, поворачивающимся вокруг нижней горизонтальной оси затвором, или откатным затвором. Сокращение заказов на крупные суда привело к тому, что развитие и строительство сухих доков за­медлилось.

Схема строительного дока
Рис. 2 Схема строительного дока
1 — портальный кран;
2 — козловой кран

С развитием поточных форм организации постройки судов стали применять горизонтальные построечные места, представляющие собой бетонную площадку, по которой проложены рельсовые пути. По рель­сам на судовозных тележках часть корпуса или весь корпус судна пере­мещают по позициям поточной линии и к спусковым сооружениям. Линейное расположение позиций поточной линии постройки наибо­лее рационально с организационно-технологической точки зрения, но тогда длина построечного места может сильно возрасти. Поэтому по­явились горизонтальные построечные места с параллельным располо­жением позиций.

Построечные места стремятся полностью или частично разместить в зданиях, которые называют эллингом.

Каждое построечное место снабжено подъемно-транспортным обо­рудованием, опорным или опорно-транспортным устройством, стапель­ными лесами и энергоподводами.

Подъемно-транспортное оборудование построечных мест включает подъемные краны и другие грузоподъемные средства (лифты, стрелы).

Наиболее распространенным типом подъемных кранов открытых построечных мест являются портальные краны (рис. 2). Они имеют прямые или шарнирно сочлененные стрелы, которые могут поворачи­ваться на 360° вокруг вертикальной оси. Кран передвигается вдоль по­строенного места по рельсовым крановым путям. Грузоподъемность портальных кранов составляет от 20 до 150 т.

Для обслуживания сухих строительных доков применяют козло­вые краны большой грузоподъемности. Такой кран (рис. 2) пред­ставляет собой мост на опорах-козлах, передвигающихся по рель­сам вдоль построечного места. По мосту крана перемещаются грузовые тележки с 2-3 гаками. Тележек обычно 2 и их суммарная подъемная сила образует грузоподъемность крана, которая может достигать 1500 т. Расстояние между опорами – пролет крана – мо­жет быть до 200 м. Такие краны могут обслуживать не только пост­роечные места, но и преддоковые площадки, расположенные перед и по бокам построечного места. На них осуществляют укрупнение секций, блоков, модулей.

Схема трансбордера
Рис. 3 Схема трансбордера
1 — судовозные рельсы;
2 — рельсы трансбордера;
3 — стальной канат;
4 — трансбордер;
5 — шкив;
6 — трансбордерная яма;
7 — лебедка;
8 — судовозная тележка

Закрытые построечные места в большинстве случаев оборудуют мостовыми кранами, грузоподъемность которых достигает 100 т и бо­лее. Кран представляет собой мост, имеющий по концам катки. Пере­двигается он по рельсовым путям, проложенным на эстакадах, распо­ложенных вдоль стен здания.

В качестве транспортных средств для доставки грузов к построеч­ному месту применяют железнодорожный и автомобильный транспорт. Для перемещения на построечное место секций (блоков) массой до 600 т используют безрельсовые платформы на пневматическом ходу, буксируемые тягачом, или самоходные трейлеры примерно той же грузоподъемности. Грузовую платформу подводят под секцию (блок) и гид­равлическими домкратами снимают ее (его) с опор, пересаживая на платформу.

После транспортировки секцию (блок) устанав­ливают на опоры построечного места, действуя в обратном по­рядке, или снимают с трейлера краном. Длина трейлера дости­гает 22-24 м при ширине до 6 м. Иногда для перемещения блоков или судна в целом применяют трансбордер, показанный на рис 3, представляющий собой сварную ферму, перемещающую­ся на катках по рельсам. Блок (судно) на судовозных тележках накатывается в продольном на­правлении на трансбордер и вме­сте с ним совершает поперечное перемещение. Трансбордер ле­бедками перемещается в трансбордерной яме — заглубленном участке.

Схема расположения элементов опорного устройства
Рис. 4 Схема расположения элементов опорного устройства
1 — кильблоки;
2 — клетки;
3 — строительные стрелы;
4 — подставы

Глубина ямы может быть от 0,8 до 1,8 м. Длина трансбордера может достигать 100-150 м и более, грузоподъемность до 2000 т.

Созданы и транспортные средства на воздушной подушке. Для та­ких средств требуются существенно меньшие тяговые усилия.

Опорное устройство предназначено для поддержания в заданном положении на построечном месте как отдельных частей судна, так и всего судна в процессе его постройки. Опорное устройство состоит из кильблоков, клеток, подстав и упоров, а на наклонном продольном ста­пеле, кроме того, из строительных стрел, препятствующих смещению судна. Схема размещения элементов опорного устройства представле­на на рис. 4.

Кильблоки располагают в диаметральной плоскости судна под флора­ми и поперечными переборками. Конструкция кильблоков обеспечивает их фиксацию и быструю разборку перед спуском суднаСпуск судов на воду, а также регулировку положения судна, блоков, днищевых секций по высоте.

Простейший кильблок, как следует из рис. 5, представляет со­бой набор металлических сварных тумб, уложенных одна на другую. Регулирование высоты кильблока осуществляют подбивкой пары ду­бовых клиньев. Такие кильблоки не обеспечивают легкой разборки при пересадке судна с опорного на спусковое устройство, работа с ними тре­бует тяжелого ручного труда.

На наклонных продольных стапелях распространены быстроразбор­ные металлические кильблоки. Представленный на рис. 5, б киль­блок имеет две стальные клиновые призмы, соединенные между собой тягой из стального угольника. Тяга стопорится самотормозящимся кли­ном. Для отдачи кильблока клин выбивают.

Применяют также гидравлические кильблоки (рис. 5, в), состоя­щие из нижней части, имеющей гидравлический домкрат, и верхней сбрасываемой части, состоящей из металлических тумб и деревянной подушки. Гидродомкрат фиксирует верхнюю часть кильблока в преде­лах рабочего хода плунжера. Наличие единой системы подачи масла ко всем домкратам позволяет осуществлять дистанционное управле­ние высотой кильблоков и дает возможность легко пересадить судно с опорного на спусковое устройство путем снятия давления масла.

Типы кильблоков
Рис. 5 Типы кильблоков
а — из металлических тумб;
б — быстро разборный;
в — гидравлический;
1 — сосновая прокладка;
2 — сосновая подушка;
3 — дубовые клинья;
4 — стапельные сварные тумбы;
5 — тяга;
7 — стальной клин;
8 — стопорная планка;
9 — гидравлический домкрат

Клетки обеспечивают устойчивое положение судна на построечном месте и разносят сосредоточенные нагрузки, например, от главных механизмов, от воды при испытании отсеков на непроницаемость на большую площадь. Клетка – часто два кильблока, поставленные рядом. Клетки располагают, как правило, под поперечными переборками.

По мере сборки и сварки секций корпуса на построечном месте устанавливают подставы и упоры – подставы под днищем, упоры по бортам. В качестве подстав и упоров используют сосновые бревна диаметром 250-300 мм. Кильблоки и подставы устанавливают вертикально под жесткие связи днища, а упоры упирают в угольники, привариваемые к наружной обшивке борта. Нижние концы подстав и упоров опирают на деревянные клинья или специальные башмаки, состоящие из двух клиновых призм, стопорящихся металлическим клином. Для отдачи подставы клин выбивают.

Количество кильблоков рассчитывают по эпюре веса судна. Ступенчатую кривую веса судна разделяют по длине на три участка, в пределах которых интенсивность нагрузки усредняют и принимают посто­янной. Для каждого участка количество кильблоков:

nк = Дпу/Qк

Где:

Удельное давление на кильблок от действия QK не должно превос­ходить допустимого давления на материал подушки, которое прини­мают равным половине давления, разрушающего подушку (для ду­ба ≤3,2 МПа). При размере подушки 25×100 см расчетная нагрузка составит 800 кН.

Количество клеток должно составлять не менее трех пар при спус­ковом весе судна до 5 тыс. т, четырех пар — при 5-10 тыс. т и шести пар при весе более 10 тыс. т.

Количество подстав:

n0 = 0,4 Дпу/Qп

Где:

Изложенный подход к проектированию схемы опорного устройства прост, но не учитывает напряженно-деформированное состояние кон­струкций построечного места, опорных элементов и корпуса судна. В ре­зультате спусковой вес судна занижают, а количество опорных эле­ментов завышают. Разботан метод проектирования схемы опорного устройства, позволяющий точно определять соотношение нагрузок в триаде судно — опоры — стапель. Судно рассматривают как балку пе­ременного сечения, покоящуюся на упруго-податливых опорах — киль­блоках, подставах, клетках и упорах, образующих дискретное опорное поле под корпусом судна. Балка загружена распределенной по длине судна весовой нагрузкой и горизонтальными усилиями, возникающи­ми от усадки монтажных сварных швов и воздействия на корпус судна солнечного тепла.

Типовые опорные схемы по ширине судна
Рис. 6 Типовые опорные схемы по ширине судна
1 — кильблок;
2 — подстава;
3 — клетка;
4 — упор

Реакции опор стапельного опорного устройства (в том числе указанных далее эквивалентных опор) рассчитывают ре­шением системы уравнений для углов поворота сечений корпуса судна на опорах от действия указанных нагрузок — системы модифициро­ванных уравнений пяти моментов. Уравнения упругих просадок эле­ментов системы судно — опоры — стапель решают на ПК с использованием модуля программного комплекса «Стапель». Комплекс позволяет при известной нагрузке от веса судна или его части опреде­лять не только упругие, но и пластические деформации подушек опор. Тем самым рассчитывают необходимое и достаточное количество опор в данный момент времени или, иначе говоря, оптимальный состав опор­ного устройства.

По результатам расчета возможно по ширине и по длине судна ус­танавливать оптимальное количество типовых опорных схем (ТОС), приведенных на рис. 6 и 7.

Схема расстановки опор вычерчивается графопостроителем. Выпол­няют проверочный расчет, который позволяет оценить допустимый спусковой вес судна и наилучшее расположение опор на любой стадии постройки судна. По сравнению с традиционными схемами расстановки опор их количество становится значительно меньше, чем получае­мое при использовании расчетной методики.

Расстановка опор вдоль судна
Рис. 7 Расстановка опор вдоль судна
а — весовая нагрузка судна и границы опорных участков;
1, 2,…., n, б — интервалы возможного размещения опор;
• — флоры, под которыми обязательны регламентируемые сочетания опор

Опорно-транспортное устройство предназначено для поддержания строящегося судна на построечном месте в требуемом положении, пе­ремещения всего судна или его частей (блоков) при поточно-позиционной постройке с одной позиции на другую и для спусков. Основные элементы устройства — судовозные тележки грузоподъемностью от 60 до 320 т. На рис. 8 показаны составляющие опорного модуля опор­но-транспортного устройства.

Несущим элементом служит подкильная стальная балка, которая при постройке судна опирается на металлические (или железобетон­ные) килевой и боковые стулья, а при перемещении судна — на транс­портные (центрирующие) опоры судовозных тележек. В их корпуса встроены гидравлические домкраты, поднимающие и опускающие судно при его пересадке со стульев на тележки и наоборот. Домкраты имеют системы автономного питания маслом от собственного ручно­го масляного насоса и группового централизованного питания от на­сосной станции, перемещающейся в составе судовозного поезда на от­дельной тележке.

Несамоходные поезда тянут тросами с тяговым усилием лебёдок от 50 до 200 кН. Тележки соединяют в судовозный поезд тягами. В состав самоходного поезда входят самоходные тележки с электро или гидроприводами.

Модули опорно-транспортного устройства
Рис. 8 Модули опорно-транспортного устройства
а — построечно-опорный модуль (при постройке судна);
б — транспортно-опорный модуль (при перемещении судна);
1 — боковой стул;
2 — килевой стул;
3 — стальная балка;
4 — сосновая подушка;
5 — стальные клинья;
6 — судовозная тележка;
7 — тран­спортная (центрирующая) опора

Скорость продольного перемещения судов 2-4 м/мин.

Что­бы при перемещении судна поддерживать неизменными нагрузки на те­лежки и устранять крен и дифферент судна после перемещения, тележ­ки объединяют в три группы:

  1. Носовую левого и правого бортов;
  2. Кормовую левого борта;
  3. Кормовую право­го борта.

Цилиндры гидродомкратов в группе соединяют общим маслопроводом, образующим сообщающиеся сосуды, что обеспечивает оди­наковое давление в каждом цилиндре группы, т. е. одинаковые нагрузки на транспортно-опорные модули в пределах группы независимо от об­щих и местных неровностей рельсовых путей. Если групповая система питания отсутствует, то поддерживать требуемое давление в домкра­тах при перемещении судна приходится вручную, стравливая масло из домкратов, в которых давление растет, и подкачивая масло в домкра­ты, в которых давление падает. Такая система несовершенна и не ис­ключает аварийных ситуаций.

При достаточном количестве тележек на заводе судно может стро­иться на тележках (без пересадок), что упрощает его постановку на опо­ры и перемещение. Пока судно строится, гидравлическая система пи­тания гидродомкратов отключена, а плунжеры стопорят.

Необходимое количество транспортных опорных модулей следует определять с учетом типа системы питания гидродомкратов тележек:

nт = КНДС/Qт

Где:

Для групповой систе­мы питания КН = 1,25, для автономной КН= 1,50.

Равномерное нагружение транспортно-опорных модулей обеспечи­вают, размещая их под корпусом судна с переменным шагом, пропор­циональным интенсивности весовой нагрузки по длине судна. По сту­пенчатой кривой спускового веса судна для 20-ти теоретических шпаций строят, как показано на рис. 9, интегральную кривую:

ДС=i=120Qi

На горизонтальной оси, кроме теоретических шпангоутов наносят точки и номера конструктивных шпангоутов.

Расчетная нагрузка на транспортно-опорные модули Q = Дс/nт (в дальнейшем построечно-опорные и транспортно-опорные модули бу­дем называть просто опорами). Проведя линии, параллельные горизон­тальной оси, на расстояниях, равных Q, до пересечения с интеграль­ной кривой веса и опустив перпендикуляры из точек пересечения на горизонтальную ось, получим базовое расположение опор. Первая ли­ния проводится на расстоянии Q/2 от оси абсцисс. Расстояние меж­ду последней линией и крайней точкой кривой должно также равнять­ся Q/2.

Затем оси опор, оказавшихся между конструктивными шпангоутами или под монтажными стыками секций, смещают под бли­жайшие флоры и поперечные переборки, что обеспечит соосное нагру­жение как опор, так и связей днища, и не будет мешать сборке корпуса. Каждая днищевая секция или блок при установке в процессе форми­рования корпуса должны опираться не менее чем в двух сечениях. При нарушении этого условия вводят дополнительные опоры. Таким обра­зом, получают окончательное расположение опор. Дополнительные опоры после формирования корпуса можно удалить. При групповой системе питания маслом гидродомкратов судовозных тележек реакции R1 и R2 транспортных опор статически определимы, так как диаметры цилиндров домкратов и давление масла в них одинаковы. Реакции вы­числяют решением уравнений равновесия судна на опорах:

mTR1+(nTmT)R2=DП

R1i=1mTƖ1i+R2j=nTmTnTƖ2j=Dn×xG

Где:

При nт опорах существует nт — 1 вариантов их группирования. Оп­тимальным будет вариант, при котором разность между реакциями кор­мовой и носовой групп опор минимальна (∆R = min|R1– R2|). Во всех вариантах на величину реакции должны быть наложены ограничения 0 < R1 < QT и 0 < R2 < QT

Схема определения базового расположения опор по интегральной кривой спусковой массы судна
Рис. 9 Схема определения базового расположения опор по интегральной кривой спусковой массы судна

Реакции построечных и транспортных опор с отключенной гидравликой статически неопределимы. Для их расчета можно исполь­зовать модифицированные уравнения пяти моментов, учитывающие влияние податливостей днищевых перекрытий корпуса, стапельных плит и их свайных или грунтовых оснований на величину и распре деление реакций опор.

При прямолинейной килевой линии корпуса, выравненной гидродомкратами с помощью автономной системы пи­тания, реакции опор также статически неопределимы и могут быть определены с помощью обычных уравнений трех моментов, так как килевая линия корпуса прямолинейна и, следовательно, опоры не имеют разновысотности. При пересадке судна с транспортных на по­строечные опоры без выравнивания килевой линии после перемеще­ния судна реакции построечных опор также статически неопредел и мы и для их определения используют уравнения пяти моментов с разновысотными опорами.

Каждое построечное место оборудуют наружными лесами для прохода на строящееся судно и доступа снаружи к любой части корпуса, где необходимо выполнить работы.

На лесах размещают:

Леса, установленные в отсеках судна, называют внутренними.

На отечественных судостроительных заводах широко применяют показанные на рис. 10 наружные леса башенного типа, состоящие из башен, располагаемых через 6-8 м, и рабочих площадок, укладывае мых на кронштейны между башнями ярусами через 2,5 м. Движение людей происходит по маршевым трапам, смонтированным в отделы ных башнях, или вместо трапов применяют лифты и эскалаторы.

Башенные леса требуют:

Совершенствование конструкций лесов заклю­чается в замене башенных лесов быстроразборными лесами трубчатой конструкции (рис. 10, б), в отказе от сплошных лесов и переходе к установке в районе работ переносных площадок (этажерок) различной конструкции, которые подают подъемным краном и надежно закреп­ляют к корпусу судна.

Конструкция внутренних лесов определяется в основном высотой отсеков, в отсеках высотой до 3,5 м ставят козлы с деревянными щита­ми, от 3 до 8 м — трубчатые леса со щитовым настилом, более 8 м- леса на кронштейнах, ярусами навешиваемые на приварных зацепах на переборки и борта. На кронштейны укладывают щитовой настил.

Вместо внутренних лесов применяют механизированные устройства (рис. 11), предназначенные для доставки рабочих в район монтаж­ных соединений или в любое другое место внутри отсека. Устройство состоит из неподвижной стойки, устанавливаемой на настиле палубы и платформы, которая вращается вместе с вертикальной колонной, опущенной в подпалубное про­странство.

Наружные леса
Рис. 10 Наружные леса
а — башенные;
б — трубчатые и переносные;
1 — башня;
2 — рабочая площадка;
3 — ярусный трап;
4 — башня с маршевым трапом;
5 — стойки трубчатых лесов;
6 — этажерки

По колонне движется каретка, к которой шарнирно при соединена горизонтальная теле скопическая стрела. На конц стрелы закреплена рабочая площадка, где находятся рабочие размещено необходимое технологическое оборудование. Приво подъема каретки установлен на новоротной платформе. На конце телескопической стрелы рядом с рабочей площадкой установлен привод её перемещения в горизон тальной плоскости. Управлени перемещением площадки производят с установленного на ней пульта. Устройство подъемным краном подают в отсек через штатные отверстия в палубе, при этом теле скопическая стрела располагается вдоль вертикальной колонны, а рабочая площадка сложена.

Устройство для внутреннего доступа в отсек
Рис. 11 Устройство для внутреннего доступа в отсек
1 — стойка;
2 — поворотная платформа;
3 — привод подъема каретки;
4 — те­лескопическая стрела;
5 — пульт;
6 — рабо­чая площадка;
7 — энергоподвод;
8 — под­ставка;
9 — колонна;
10 — каретка

Каждое построечное место обо­рудуется системами снабжения:

Кабели и трубопроводы прокладывают вдоль всего построечного места с обеих сторон, а посты подключения к магистралям оборудуют на башнях лесов и площадках.

Рекомендуется к прочтению:
Способы и последовательность формирования корпуса судна
Изготовление блоков секций

Сноски
Sea-Man

Нашли опечатку? Выделите и нажмите CTRL+Enter

Февраль, 07, 2018 8294 0
Добавить комментарий

Текст скопирован
Пометки
СОЦСЕТИ