Сайт нуждается в вашей поддержке!
Категории сайта

Строение судна на подводных крыльях

Присоединяйтесь к нашему ТГ каналу!

После завершения первого в жизни плавания через Ла-Манш в Булонь на борту SR.N4 известная французская журналистка выразила в газете свое восхищение и удивление путешествием на этом гигантском судне. Ее статья была опубликована на первой странице под заголовком “Капитан утверждает, что у СВП под юбкой ничего нет!”

В отличие от СВП с его невидимым пузырем сжатого воздуха устройства, поддерживающие судно на подводных крыльяхВиды парящих судов на подводных крыльях над поверхностью воды, представляют собой солидную систему крыльев и стоек, изготовленных из особо прочных сплавов или нержавеющей стали. Подводные крылья – это относительно небольшие плоскости почти такого же типа, как и авиационные. Они сконструированы с целью создания подъемной силы. Типы подводных крыльев, применяемые в настоящее время, в основном подразделяются на пересекающие поверхность воды, глубоко погруженные и мало погруженные. Существует несколько судов с комбинированной крыльевой системой, например РТ150 фирмы “Супрамар”, у которого в носовой части установлено крыло, пересекающее поверхность воды, а на корме – глубоко погруженное крыло, управляемое автоматической системой стабилизации. На судне фирмы “Де Хэвиленд Канада” FHE-400 в носовой оконечности установлено пересекающее поверхность подводное крыло, а в кормовой – сочетание из пересекающего и погруженного.

Пересекающие поверхность подводные крылья

Пересекающие поверхность подводные крылья в основном имеют V-образную форму, некоторые из них выполнены в виде трапеции или буквы W. Боковые участки подводных крыльев пересекают водную поверхность и движутся, частично выступая над ней.

Отличительной особенностью V-образного крыла, впервые продемонстрированного генералом Крокко, а затем в результате многолетних исследований усовершенствованного Гансом фон Шертелем, является его способность сохранять вполне определенное положение. Это подводное крыло по отношению к воде обеспечивает как продольную, так и поперечную остойчивость при различных состояниях поверхности моря. Силы, восстанавливающие заданное положение крыла, возникают на той его части, которая движется под водой. Когда судно во время бортовой качки кренится в одну сторону, увеличение размеров зоны погружения бокового участка крыла автоматически приводит к появлению дополнительной подъемной силы, которая противодействует крену и возвращает судно в прямое положение.

Выравнивание килевой качки происходит почти таким же образом. Направленное вниз движение носовой части, приводит к увеличению площади погружения носового подводного крыла. В результате создается дополнительная гидродинамическая подъемная сила, которая поднимает нос судна в исходное положение. По мере увеличения скорости движения судна, создается все более возрастающая подъемная сила. Вследствие этого, корпус судна приподнимается выше над поверхностью воды, что в свою очередь обусловливает уменьшение площадей крыльев, находящихся под водой, а соответственно и гидродинамической подъемной силы. Так как подъемная сила должна быть равна массе судна и зависит от скорости движения и площади погруженных в воду участков крыльев, корпус судна движется на определенной высоте над поверхностью воды, оставаясь в состоянии равновесия.

КПК
КПК пересекающий поверхность воды
Источник: Pixabay.com

Катера, оборудованные пересекающими поверхность подводными крыльями, показали удовлетворительные технико­эксплуатационные качества на внутренних водоемах, в морских прибрежных водах и районах, имеющих естественную защиту от штормов. Такие крылья обладают органически присущей им остойчивостью и простотой конструкции, уход за ними несложен. Отличаются они также и значительной прочностью. Тем не менее, при сильном волнении моря предпочтительнее использовать глубоко погруженные крылья, поскольку на крутой волне они обеспечивают лучшие технико-эксплуатационные показатели. Одним из негативных свойств обычных пересекающих поверхность подводных крыльев является то, что присущая им тенденция к выравниванию заставляет их следовать за всеми взлетами и падениями волновых движений.

Это приводит к возникновению вертикальных перегрузок и тряске, которые одинаково неприятны и для пассажиров, и для команды. В идеальном варианте вместо следования за контуром этих волн подводные крылья должны двигаться сквозь них, как бы по ровной и гладкой платформе, удерживаясь на заданном курсе. Но, к сожалению, пересекающие поверхность подводные крылья “не делают различия” между волнами, опускающими нос судна и теми, которые поднимают его. В то же время дополнительная подъемная сила возникает в обоих случаях. Кроме того, существует риск встречи с волной неправильной формы, при которой большая часть подводного крыла приподнимается над поверхностью воды, что приводит к потере подъемной силы и соответственно, к удару корпуса судна о поверхность воды.

Технические показатели пересекающих поверхность подводных крыльев ухудшаются, при эксплуатации в условиях попутной волны. В силу того, что подводные крылья движутся быстрее волн, они преодолевают их с заднего склона. Во время подъема подводных крыльев по тыльной поверхности этих волн, орбитальное или круговое движение частиц воды внутри волны направлено вниз. Это уменьшает скорость потока, обтекающего крылья, отчего уменьшается подъемная сила, а это в свою очередь приводит к резкому проседанию корпуса судна. При встречной волне ситуация, естественно, меняется на обратную.

Причем предельная высота попутных волн для большинства судов с V-образной формой подводных крыльев составляет – три четверти высоты встречных волн. При анализе результатов, полученных в ходе изучения различных типов подводных крыльев, стало очевидным превосходство глубоко погруженных крыльев, в условиях развитого волнения и движения за попутной волной. Использование системы общей стабилизации, в дополнение к имеющимся системам автоматического регулирования глубины погружения этих крыльев, позволило бы уменьшить действующие на судно моменты килевой и бортовой качки, а также вертикальные перегрузки.

Глубоко погруженные крылья

Глубоко погруженные крылья находятся ниже поверхности раздела двух сред на глубинах, где в значительной степени уменьшается влияние погружения на гидродинамическую подъемную силу.

Сравнительное “безразличие” таких крыльев к изменению их положения относительно уровня воды, приводит к необходимости применять специальные меры, по обеспечению стабилизации движения судна. Так как корпус судна на ходу движется над поверхностью воды, опираясь на относительно небольшие крылья, его центр тяжести оказывается достаточно высок. Поэтому, если бы возвышение судна постоянно не контролировалось и не приводилось к заданному положению, неминуемо наступил бы удар корпуса о воду.

КПК
Катер с глубоко погруженными крыльями
Источник: Freeimages.com

Для того, чтобы избежать подобного явления, поддерживая заданную глубину погружения подводных крыльев и нормальное положение судна, необходимо установить на нем автоматическую систему стабилизации. Она призвана обеспечить стабилизацию судна, при его разгоне из состояния плавания, при движении с отрывом корпуса от воды и плавном приводнении как на тихой воде, так и в условиях морского волнения, а также возможность преодоления большинства волн, без ударов о них корпусом и без резких значительных колебаний относительно всех трех осей. Кроме того, должно быть обеспечено выполнение координированных разворотов, за счет снижения действия боковых перегрузок и уменьшения поперечных усилий, воспринимаемых стойками крыльев. Система должна способствовать созданию таких условий движения судна, при которых вертикальные и горизонтальные перегрузки оставались бы в пределах принятых норм.

Это исключит возникновение чрезмерных нагрузок на корпусные конструкции, создаст благоприятные условия плавания, для пассажиров и команды судна. В автоматических системах стабилизации движения судов на глубоко погруженных подводных крыльях используются высотомеры, основанные на радиолокационном, ультразвуковом, механическом и других принципах. Кроме того, постоянно получается и обрабатывается информация от датчиков крена, дифферента и перегрузок в оконечностях судна. Команды управления положением рулей курса, крыльев или их закрылков вырабатываются по принципам, применяемым в авиации. Типичным примером автоматической системы управления может служить устройство, которое применено на пассажирском СПК “Джетфойл” фирмы “Боинг”. Это судно массой 106 т оборудовано водометными движителями, обеспечивающими скорость движения 45 уз.

Система стабилизации принимает сигналы о положении корпуса судна и направлении его перемещений от гироскопов, датчиков ускорений и двух ультразвуковых высотомеров. В электронно-вычислительном блоке происходит суммирование сигналов от всех устройств с командами пульта ручного управления.

Вырабатываемые этим блоком команды, позволяют с помощью электрогидравлических сервоприводов компенсировать внешние переменные силы, действующие на судно. Регулирование параметров подъемной силы осуществляется с помощью закрылков, расположенных по всей длине задних кромок крыльев. Закрылки правой и левой частей кормового крыла имеют независимые приводы, изменяющие положение судна относительно продольной оси в момент перемены курса. Данная система обеспечивает стабилизацию по крену и удержание на заданном курсе, позволяя выполнять повороты, не допуская оголения консолей крыльев, исключая опасность прорывов воздуха в зоны разрежения и как следствие этого, потери подъемной силы. Скорость поворота до 6 градусов в секунду достигается примерно через 5 с после поворота штурвала.

Управление судном ведется всего от трех органов:

  1. Для измерения скорости движения установлена ручка газа главных турбин;
  2. Для изменения положения корпуса по высоте – ручка управления погружением крыльев;
  3. Для удерживания судна на постоянном курсе – штурвал (дополнительный блок обеспечивает это автоматически).

Во время отрыва от поверхности устанавливается нужная глубина погружения крыльев и подаются вперед регуляторы (дроссели) двух газовых турбин “Аллисон” по 3 300 л. с. каждая. Корпус судна отрывается от воды за 60 с. Ускорение действует до тех пор, пока движение судна не стабилизируется автоматически в пределах, определяемых требуемой глубиной погружения крыльев и скоростью, заданной оператором. Для приводнения судна уменьшают газ и оно, теряя скорость, плавно опускается на воду. Обычно за 30 с скорость может упасть от 45 до 15 уз. В случае экстренной необходимости, переведя ручку управления погружением крыльев, можно осуществить приводнение всего за 2 с. Эта система управления идентична системам, применяемым на таких катерах ВМС США, как РСН-1, PGH-1 “Тукумкари” PGH-2, AGEH и РНМ.

В ней тоже использован принцип модульных конструкций. Различные компоненты систем – это уже хорошо зарекомендовавшие себя в авиакосмических исследованиях приборы и инструменты, ранее отобранные для применения в автопилотах самолетов. В системах управления катером РНМ использовано исключительно авиационное оборудование. Управление работой закрылков и носовой стойки, выполняющей функцию руля курса, осуществляется системой, укомплектованной из узлов, идентичных или абсолютно одинаковых с установленными на авиалайнере “Боинг-747-Джамбо”.

Пассажирское судно на ПК
Пассажирское судно на подводных крыльях – “Джетфойл”
Источник: Foter.com

Конструкторы судна “Джетфойл” воспользовались результатами исследований опытных катеров ВМС США, PCH-Mod-1; РСН-1 и PGH-1 “Тукумкари”. Это позволило создать морское пассажирское быстроходное судно, почти непревзойденное по своим технико-эксплуатационным характеристикам и уровню комфорта. При осуществлении проекта “Тукумкари” пришли к выводу о необходимости замены одного датчика перегрузок, установленного в диаметральной плоскости, двумя. Причем эти датчики разместили непосредственно, над каждым из основных крыльев так, чтобы можно было независимо управлять их закрылками. Это позволило избежать такого неприятного явления, как “продольная раскачка”. Создатели катера впервые столкнулись с ним во время испытаний КПК в морских условиях, при крутой трехмерной волне, когда каждое кормовое крыло оказывалось на различных участках волны и попадало в зоны действия различных орбитальных скоростей.

В последнее время ВМС США стали стремиться к стандартизации автопилотов, применяемых на КПК и с этой целью командование американских военно-морских сил утвердило в 1972 г. программу исследований под названием HUDAP (аббревиатура, составленная из начальных букв английских слов, в переводе означающих “программа универсального цифрового автопилота для КПК”). Целью программы является разработка высоконадежной системы, обладающей достаточной универсальностью, что позволило бы использовать ее на всех типах современных и перспективных КПК. Эта система, должна была также обладать качествами, дающими возможность совместить автоматическое управление с другими судовыми функциями. Система, разработанная на базе цифровых ЭВМ, обеспечила такую степень стабилизации КПК, которая превышает нормативные требования.

Это позволило дополнительно решить следующие задачи:

Наиболее оригинальное решение проблемы управления подъемной силой, предложено в проекте швейцарской фирмы “Супрамар”. Система основана на использовании известного физического явления, которое заключается в том, что на подъемную силу можно действовать, путем открытия доступа атмосферного воздуха на верхнюю поверхность крыла, т. е. в зону низкого давления, отказавшись от использования подвижных элементов крыла. Подъемная сила изменяется в зависимости от количества воздуха, поступающего по специальным каналам, расположенным вдоль верхней части поверхности крыла. При этом движение потока отклоняется в сторону от поверхности крыльев, что приводит к аналогичному действию закрылков. Позади воздушных отверстий крыла, образуются свободные от воды полости, что фактически приводит к удлинению подводного крыла.

Доступ атмосферного воздуха к отверстиям на верхней поверхности каждого из крыльев регулируется специальным клапаном. Этот клапан управляется гироскопом и поперечным инерционным маятником, которые каждый в отдельности, а также совместно при помощи сумматора могут менять положение штока вакуумного усилителя, связанного с тягой воздушного клапана промежуточным рычагом. Маятник обеспечивает спрямление судна после накренения, а также поворот с благоприятным креном. Работа гироскопа позволяет умерять бортовую и килевую качки.

Теплоход на ПК
Теплоход на подводных крыльях – “Комета”
Источник: Pexels.com

Эта система впервые была установлена на катере “Флиппер” фирмы “Супрамар”. На этом катере кормовое крыло, пересекающее поверхность воды, было заменено глубоко погруженным, оборудованным системой автоматического управления доступом воздуха. Условия пребывания на “Флиппере”, при движении на волне высотой до 1 м оказалось куда более комфортабельными, нежели на серийных катерах этого класса, при высоте волны 0,3 м. Впоследствии эта система была с успехом применена на катерах PTS150 и PTS75Mk1II. В 1065 г. ВМС США предоставил фирме “Супрамар” заказ на постройку 5-тонного исследовательского катера, при создании которого требовалось использовать корпус РТS и элементы конструкции КПК ST3A. На катере ST3A были впервые применены глубоко погруженные крылья с системой воздушной стабилизации.

Во время испытаний в Средиземном море этот катер, при скорости 54 уз показал высокие эксплуатационные качества, доказав тем самым, что с помощью системы воздушной стабилизации можно обеспечить надежное управление и стабильное движение КПК с глубоко погруженными крыльями, как на тихой воде, так и в условиях волнения моря. При высоте воли порядка 1 м, что составляет одну десятую длины этого катера, были отмечены лишь незначительные вертикальные ускорения. Это выгодно отличает его от других катеров с глубоко погруженными крыльями. Система была применена фирмой “Супрамар”, при технической разработке 250-тонного патрульного КПК, который должен был удовлетворять тактическим требованиям, установленным для подобных катеров в ВМФ ФРГ и других стран НАТО.

Фирма “Супрамар” продолжает совершенствовать системы стабилизации КПК, основанные на автоматическом управлении доступом воздуха к крыльям. Одновременно ведутся разработки вспомогательных систем аналогичного типа, предназначенных для обеспечения плавности перехода от докавитационного к суперкавитационному режиму обтекания крыльев. Такие системы благодаря доступу воздуха к крыльям позволят избежать резкого падения подъемной силы, наступающего при возникновении кавитации. Специальные испытания показали, что открытие доступа к кавитирующему крылу приводит к существенному уменьшению или полному исчезновению кавитационной каверны.

Испытания такой системы проводятся по заказу ВМС США в Голландии в одном из бассейнов. При этом моделируются режимы со скоростями движения до 60 уз для натурного КПК, в условиях морского волнения. Создание все более крупных морских КПК, приводит к необходимости существенно увеличить габариты крыльевых устройств и размеры управляемых закрылков.

Механическое регулирование угла атаки подводных крыльев

Наиболее удачной системой механического регулирования угла атаки, была конструкция крыльев катера “Хайдрофин”, спроектированная Христофором Гуком. Ведущая роль Гука в создании первого удачного образца СПК с глубоко погруженными крыльями уже отмечалась в первой главе.

На СПК “Хайдрофин” угол атаки носовых крыльев может изменяться, с помощью двух рычажных датчиков волн, поворачивающихся на той же оси, что и стойки крыльев и протянутых в наклонном положении впереди носа судна. Эти рычаги поддерживаются на поверхности волн с помощью подамаргазиро­ванных скользящих по воде плоскостей. Вращение рычагов жестко демпфировано, характеристики демпфирования могут регулироваться, для обеспечения управления судном в соответствии с интенсивностью волнения. Вспомогательная функция датчиков-рычагов заключается в создании непрерывной поддерживающей силы для носовой оконечности, при падении подъемной силы на обоих или одном носовых крыльях.

Амплитуды бортовой качки измеряются, с помощью двух дополнительных датчиков, установленных на стойках подводных крыльев. В распоряжении рулевого находится ножное управление с рулевой колонкой, которая действует аналогично установленной на самолетах.

Варианты судовой качки
Килевая и бортовая качка судна на подводных крыльях
Источник: Pixabay.com

Существует чисто механическая система, это “закрылок Савицкого”, изобретенный доктором Савицким из Дэйвидсоновской лаборатории Технологического института Сти­венса, в штате Нью-Джерси. Система доктора Савицкого применена на судах “Си Уорлд” и “Флаийнг Клауд” фирмы “Атлантик Хайдрофойл“.

Закрепленные на шарнирах вертикальные закрылки используются в этой системе, для изменения подъемной силы подводных крыльев. Они имеют скошенную форму и механически соединены с задней кромкой стоек подводных крыльев. При нормальной высоте движения в погруженном состоянии находится только нижняя часть “закрылка Савицкого”. Когда же из-за увеличения высоты волн под воду, погружается большая часть чувствительного к глубине закрылка, давление на него усиливается, заставляя повернуться и переложить закрылки подводных крыльев, что ведет к увеличению подъемной силы и соответственно, к восстановлению нормального положения и нормальной высоты движения судна. Фирма “Дайнафойлинк” в Ньюпорт-Бич (Калифорния) на построенном ею двухместном спортивном СПК “Дайнафойл Марк 1” продемонстрировала новый подход к проблеме стабилизации подводных крыльев.

Предлагается к прочтению: Полет на крыльях

Судно с корпусом из стекло­-пластика было задумано, как водный аналог мотоцикла и снегохода. Оно имеет главное глубоко погруженное кормовое подводное крыло и небольшое дельтавидное (в форме биплана) переднее крыло, с изменяемым углом атаки. Угол атаки регулируется механически, с помощью изогнутого дельтавидного управляющего крыла, установленного под углом к набегающему потоку. При изменении обтекания управляющее крыло через механическую систему изменяет угол атаки двойного горизонтального крыла, установленного в нижней части носового крыла. Это ведет к изменению подъемной силы и возврату подводных крыльев, на заданную глубину погружения.

Мало погруженные подводные крылья

Первые мало погруженные подводные крылья применялись – на пассажирских и спортивных СПК, спроектированных и построенных в Советском Союзе. Они просты, надежны и пригодны для использования на протяженных укрытых от штормов реках, озерах, каналах и на внутренних морях и в особенности на многих тысячекилометровых мелководных трассах, где V-образное или трапециевидное расположение подводных крыльев, было неприемлемо из-за относительно глубокой осадки в погруженном состоянии. Этот тип крыльев, известный также, как мелководная серия, был разработан доктором технических наук Р. Е. Алексеевым.

Он состоит из двух основных горизонтальных подводных крыльев, по одному впереди и сзади, на каждое из которых распределена приблизительно половина массы всего судна. Погруженное подводное крыло начинает терять подъемную силу по мере приближения к поверхности приблизительно с глубины, равной одной хорде (расстояние между передней и задней кромками крыла). На передних стойках по левому и правому бортам, закреплены глиссирующие наделки в форме поплавков. С их помощью судно выходит из воды, на крыльевой режим, они также препятствуют заглублению крыла. Эти наделки расположены таким образом, что при их касании водной поверхности основные подводные крылья погружены на глубину приблизительно в одну хорду.

СПК
Мало погруженные подводные крылья на судах
Источник: Freeimages.com

С появлением СПК “Ракета”, первый образец которой был спущен на воду в 1957 г., тип крыльев Алексеева в процессе эксплуатации претерпел немало изменений. У большинства более крупных СПК, таких как “Метеор”, “Комета”, “Спутник” и “Вихрь”, теперь имеются два мало погруженных крыла и одно дополнительное носовое, установленное по всему размаху и предназначенное для увеличения продольной устойчивости, ускорения выхода на крыльевой режим и улучшения всхожести на волну.

Последняя модель “Кометы” серии “М” имеет своеобразную отличительную особенность. На этом СПК, впереди установлено трапециевидное пересекающее поверхность воды крыло, а над ним W-образное мало погруженное подводное крыло, изменяющее крен. Трапециевидное крыло идентично V-образному подводному крылу во всем, кроме короткой горизонтальной секции в основании конструкции.

Это крыло устойчиво уже в силу самой своей формы.

Все крыльевые схемы СПК конструкции Р. Е. Алексеева включают, кроме мало погруженных, несущих основную нагрузку крыльев, еще и носовые, следящие за поверхностью воды элементы, такие как:

Фактически стабилизация СПК Алексеева, движущихся в крыльевом режиме, обеспечивается при малых отклонениях от расчетного положения, за счет влияния погружения на несущую способность основных мало погруженных крыльев (“эф­фект Алексеева”), а при значительных отклонениях СПК по дифференту, крену и высоте, когда степень влияния погружения на подъемную силу основных крыльев снижается, начинает автоматически проявляться принцип Грюнберга — изменение подъемных сил, создаваемых основными подводными крыльями, жестко связанными с корпусом, за счет поворота основных крыльев вместе с корпусом вокруг носовых, следящих за поверхностью воды элементов крыльевого устройства (изменение углов атаки основных крыльев).

Подводные крылья лестничного типа

Лестничное подводное крыло представляет собой, самую старую конструкцию пересекающих поверхность воды крыльев. Оно в самом деле напоминает лестницу, так как состоит из нескольких плоскостей, укрепленных под прямым углом к стойкам. Первые лестничные системы крыльев, например те, что были использованы Форланини, состояли из двух комплектов лестничных плоскостей, которые находились под корпусом СПК в носу и корме. Вскоре стало ясно, что такое расположение имеет существенный недостаток – отсутствие поперечной устойчивости движения. В более поздних моделях этот недостаток был устранен, путем установки двух секций носовых подводных крыльев, которые располагались по обе стороны корпуса на укороченных плоскостях, стойках или пилонах.

В основном лестничные подводные крылья были прямыми, но иногда имели V-образную форму. Это предотвращает резкое падение подъемной силы, когда плоскости выходят на поверхность воды. В настоящее время одно из немногих судов с лестничными подводными крыльями — это “Уиллиуо”, яхта на подводных крыльях массой 1,6 т, со скоростью движения 30 уз. В сентябре 1970 г. она завершила 16-дневный переход из Саусалито (Калифорния) в бухту Кахулуи в Мауи на Гавайях. Это первое парусное СПК, совершившее океанское плавание. Яхта оснащена боковыми четырех-ступенчатыми крыльями — лесенками, а кормовое крыло — руль имеет трехступенчатую форму. Подобно V-образному подводному крылу лестничные крылья, также могут обеспечить необходимую устойчивость судна, сохраняя при этом подъемную силу на крыле при заданной глубине погружения.

Расположение крыльев

Еще один важный вопрос, требующий исследования — это расположение по длине судна зон, в которых возникает подъемная сила. Существуют три различные схемы расположения крыльев – самолетная, „утка” и „тандем”. При самолетной или обычной, схеме расположения крыльев основная часть нагрузки приходится на составное или разрезное подводное крыло, расположенное в средней части корпуса, ближе к носовой оконечности, а на кормовое крыло приходится меньшая часть массы СПК.

СПК Джетфойл
Расположение подводных крыльев на судне – “Джетфойл”
Источник: Foter.com

Схема „утка” построена по обратному принципу. В ней основная часть массы судна приходится на составное или разрезное основное подводное крыло, расположенное позади миделя корпуса, а на меньшее носовое крыло – малая часть нагрузки. Особенность схемы “тандем” заключается в том, что нагрузка распределяется поровну, между носовым и кормовым подводными крыльями. Чаще всего основные подводные крылья разрезают для обеспечения подъема или подтягивания к корпусу из воды, как это сделано на катерах “Тукумкари” фирмы “Боинг” и “Плейнвыо” фирмы “Грумман”.

Однако можно избежать необходимости разделения основного крыла. Так, в схеме “утка” основное подводное крыло перемещается целиком в точку позади транца. Примерами могут служить катера РНМ-1 и “Джетфойл”. В иных случаях стойки крыльев, могут втягиваться вертикально вверх внутрь корпуса, как на катере РСН-1 “Хай Пойнт” фирмы “Боинг”.

Кавитация

Кавитация, по существу, является основным препятствием на пути создания судов на подводных крыльях, которые длительное время движутся на высоких скоростях. Кавитация наступает обычно, при скорости от 40 до 45 уз, при которой абсолютное давление на каком-то участке верхней поверхности крыла, падает ниже давления насыщенных паров воды.

Кавитация бывает двух видов:

  1. Устойчивая;
  2. Неустойчивая.

Неустойчивая кавитация возникает, когда пузырьки пара образуются, непосредственно позади передней кромки подводного крыла и распространяются по его профилю вниз, раздуваясь и лопаясь с высокой частотой. В момент разрыва пики давления достигают 13- 106кгс/м2 (127 МПа). Это явление ведет к кавитационной эрозии металла и создает неустойчивость потока вокруг крыльев, что в свою очередь вызывает резкие изменения подъемной силы и соответственно, явления, ощущаемые пассажирами СПК.

На большинстве современных пассажирских и боевых КПК установлены докавитационные подводные крылья NACA, которые обеспечивают равномерное распределение давления по всей длине хорды, что дает наибольшую подъемную силу в пределах их докавитационной скорости. Для того, чтобы предотвратить возникновение кавитации, необходимо поддерживать относительно низкую нагрузку крыла, порядка 5 300-6 200 кгс/м2 (52-60 кПа). Но, при скорости 40-50 уз опасность возникновения кавитации все же сохраняется. В диапазоне скоростей 45-60 уз необходимо считаться с существованием кавитации, по крайней мере в течение короткого периода времени.

Но, при скорости движения свыше 60 уз приходится применять только специальные суперкавитирующие или вентилируемые профили крыльев. Один из способов борьбы с последствиями, вызываемыми кавитацией, связан с подачей воздуха в зону ее возникновения, путем естественного прососа или искусственной подачи воздуха. При другом решении, также не вышедшем еще за рамки исследовательских работ, предполагается предпринимать меры по существенному изменению характеристик потока, при возникновении кавитации. Профили, спроектированные для такого режима, называются переходными. Все отмеченные выше исследования, ведутся с целью эффективной эксплуатации СПК на высоких скоростях, в условиях возникновения кавитации.

Устройство СПК
Крыльевое устройство и детали судна на подводных крыльях
Источник: Pexels.com

Суперкавитирующее крыло, имеет острую переднюю кромку, для того чтобы организовать кавитационную каверну вдоль всей засасывающей стороны профиля. Каверна замыкается за задней кромкой крыла и тем самым разрешаются проблемы его вибрации и эрозии. Кроме того, для уменьшения сопротивления движению крыла, можно нагнетать воздух в зону, образующуюся позади его квадратной задней кромки. Этот тип подводного крыла известен, также под названием вентилируемого. Он был испытан на скоростном опытном судне “Фреш-1”, при скорости до 80 уз в условиях тихой воды. На стреловидном суперкавитирующем крыле, возникает кавитационная каверна, которая распространяется сначала по всей поверхности крыла, затем вниз и распадается значительно ниже его задней кромки.

Подъемная сила и сопротивление таких подводных крыльев, определяются формой лобовой кромки и нижней плоскости. Исследования различных типов скоростных подводных крыльев не прекращаются и по сей день. Особое внимание уделяется проблемам увеличения подъемной силы, в момент отрыва СПК от поверхности воды, управления подъемной силой, перехода от докавитационных к сверхкавитационным скоростям, задаче разработки острых передних кромок крыла, обладающих тем не менее достаточной конструктивной прочностью. Серьезную проблему, при создании суперкавитирующих крыльев, представляет прорыв атмосферного воздуха в каверну на крыле, который может происходить либо по стойке, либо при замыкании каверны на свободную поверхность вследствие волновых возмущений.

Прорыв воздуха или как его называют, вентиляция происходит чаще всего тогда, когда стойки крыльев имеют большой угол атаки, например во время поворотов на высокой скорости. Воздух может проникать также через каналы внутри стоек. Один из методов борьбы с прорывом воздуха заключается в использовании „забора”, т. е. небольших по размерам шайб, огибающих крыло и размещенных через короткие промежутки, вдоль всей поверхности верхней и нижней его плоскостей. Шайбы расположены как на гидрокрыльях, так и на стойках и направлены вдоль линий потока, что предотвращает прорыв воздуха к каверне и изменение условий обтекания крыла.

Двигатели

Подавляющее большинство современных пассажирских СПК, оборудованы быстроходными дизелями, которые до сих пор, остаются наиболее экономичными и надежными энергетическими установками, для малых морских судов. Как уже было отмечено ранее, преимущества судна с дизелем заключаются в его более низкой стоимости, а также в меньших затратах на горючее и обслуживание. Кроме того, для проведения капитального ремонта или починки такого СПК, нетрудно найти опытного инженера по дизельным установкам. Принимая во внимание то обстоятельство, что легкий дизель может работать до капитального ремонта, от 8 до 12 тыс. ч, стоимость его эксплуатации более чем вдвое ниже расходов на эксплуатацию соответствующей морской газовой турбины. Еще одно важное преимущество заключается в следующем, хотя масса турбины может составлять всего 75-80 % массы дизеля, такой же мощности, но с учетом запасов топлива общая масса судна, оснащенного газовой турбиной, будет всего на 7-10 % меньше.

Устройство СПК
Устройство судна на подводных крыльях
Источник: Pixabay.com

Тем не менее, диапазон мощности имеющихся в настоящее время легких дизельных установок, ограничивается 4 000 л. с. (3 000 кВт). Поэтому на более крупных судах становится неизбежным применение газовых турбин. Следует отметить, что использование на крупных СПК более мощных газотурбинных установок, дает значительные преимущества. Их производство проще, они имеют малый удельный вес, обеспечивают очень высокий момент вращения на низких скоростях, быстрее разогреваются и набирают ускорение и наконец, их можно установить в различной комбинации, от одной до четырех турбин, с требуемым уровнем мощности от 1 000 до 80 000 л. с. (740-60 000 кВт).

Это интересно: Планирование перехода

Эти газовые турбины, как и те, что применяют на СВП, несколько отличаются от двигателей современных самолетов (турбины для судна РНМ разработаны на основе двигателей TF-39 фирмы “Дженерал электрик”, которые установлены на транспортном самолете С-5А и авиалайнере DC-10 “Триджет”). Эти двигатели работают в комплексе с турбинами, превращающими энергию газа во вращательную механическую энергию. Ротор турбины вращается свободно и независимо от газо-генератора и поэтому может обеспечивать регулировку мощности и скорости вращения. Поскольку обычные газовые турбины проектировались без учета возможной эксплуатации в морских условиях, на лопасти турбин пришлось нанести особое покрытие, предохраняющее их от действия соленой воды. С этой же целью, детали из магниевого сплава заменены деталями из других металлов.

Трансмиссия

Простейшими формами передачи мощности гребному винту, можно считать наклонный вал или V-образную передачу. Оба эти вида передач, могут быть использованы для малых СПК с пересекающими поверхность воды крыльями и для СПК с мало погруженными подводными крыльями, у которых киль расположен на небольшой высоте над основным уровнем воды. Однако наклон вала не должен превышать 12-14° по отношению к горизонтали, в противном случае возникнет кавитация лопастей винта. Это означает, что типичный по размерам корабль на подводных крыльях, может иметь весьма ограниченную высоту просвета, между корпусом и поверхностью. Поэтому единственный известный вид механической трансмиссии, который обеспечивает достаточный клиренс СПК в условиях волнения моря — это двойная угловая зубчатая или Z-образная передача. В силу относительной простоты конструкции все большую популярность завоевывает водометный движитель, но при скоростях движения 35-50 уз, он уступает по эффективности гребному винту.

Достоинства его заключаются прежде всего в простоте управления, большей надежности и менее сложной в механическом отношении схеме передачи мощности. В примененной на катере “Джетфойл” фирмы “Боинг” установке, мощность обеспечивается двумя газовыми турбинами “Аллисон”, каждая из которых соединена через редуктор с осевым водометным движителем. Когда СПК находится в крылье­вом режиме, вода в систему поступает через трубчатый водозаборник, расположенный на нижнем конце центральной стойки кормового подводного крыла. В верхней части трубопровода водный поток разделяется на две струи и поступает в осевые насосы движителей.

Работа движителя СПК
Схема движения воды в движительной системе
Источник: Freeimages.com

Затем под высоким давлением вода выбрасывается через сопла, помещенные у основания транца. Схема движения водяной струи в движительной системе СПК “Джетфойл” во время движения не в крыльевом, а в водоизмещающем режиме, та же самая. В этом случае поступление воды происходит через напорный водозаборник в киле. Обратный ход и маневрирование в водоизмещающем режиме обеспечиваются с помощью козырьков, которые расположены непосредственно за соплом работающего главного движителя. Они то и разворачивают или отклоняют поток. Вероятно, в будущем будет эксплуатироваться очень много СПК с водометными движителями, со скоростью движения в пределах 45-60 уз. Тем не менее в качестве движителей на скоростях до 80-120 уз водометы значительно уступают в эффективности суперкавитирующим гребным винтам. Но прежде чем будут созданы подобные движительные комплексы, предстоит решить целый ряд проблем гидродинамического порядка.

Несомненно одно – дальнейшие исследования в области судов с динамическими принципами поддержания, помогут найти решение этих проблем.

Сноски
Sea-Man

Нашли опечатку? Выделите и нажмите CTRL+Enter

Август, 06, 2018 6493 0
Добавить комментарий

Текст скопирован
Пометки
СОЦСЕТИ